0.7 What do they have in common?

The Family of Linear Functions

In Lesson 0.6 your team investigated functions of the form $f(x) = \frac{1}{x-h}$, where *h* could be any number. You learned that as you changed *h*, the graph changed, but the basic shape stayed the same. In this lesson, you will think about functions of the form f(x) = mx + b.

- 1. Consider functions of the form f(x) = mx + b.
 - a. What do *x* and *y* represent in this function? What do *m* and *b* represent? Which ones can you change?
 - b. With the rest of the class, explore the effects of *m* and *b* on the function f(x) = mx + b. What effect does *m* have on the graph? What effect does *b* have on the graph?
 - c. For this function, *m* and *b* are called **parameters** (as *h* was for $f(x) = \frac{1}{x-h}$), whereas *x* and *y* are called **variables**. With your team, explain the difference between a parameter and a variable.
 - d. What do all of the functions of the form f(x) = mx + b have in common? Since they all have the same basic relationship between x and y, they can be called a **family of functions**.
- With your team, examine each of group of equations below and <u>discuss</u> what you would see if you drew the graphs of the four equations on one set of axes. Write a description of what you imagine you would see. (You do not actually have to draw them.)

a.
$$x + 2y = 10$$

 $y = -\frac{1}{2}x + 3$
 $-4y = 2x + 8$
 $y = -\frac{1}{2}x$
b. $5x + y = -3$
 $y = -\frac{1}{2}x - 3$
 $3x - 4y = 12$
 $5y - 2x = -15$

3. Parts, (a) through (f) below are six representations of a relationship between an input and an output. With your team, decide whether each relationship is linear and write a clear summary statement justifying your decision. If the relationship is linear, graph it and find its equation. If it is not linear, describe the growth.

a.	Pieces	Grams	D.	Killer Fried Chickens	с.			d.	1		
	of	of		charges \$7.00 for a	-	10	<u>y</u>	-	x	<u>y</u>	_
	Bread	Fiber		basic bucket of chicken		10			10	1	
2	0	0		and \$0.50 for each		5	2		5	2	
	1	5		additional piece. The		3	7		4	2.5	
	1	10		input is the number of		2	8		2	5	
	2	10		extra pieces of chicken		1	9		1	10	
	3	15		ordered, and the output		0	10		0.5	20	
	4	20		is the total cost of the							
e.	James p his yard planted produce Each ye of the b number doubles year aft the outp of flowe	planted a bush in d. The year he it, the bush ed 17 flowers. ear, the branches ush split, so the of flowers c. The input is the ier planting, and put is the number ors	2	order. f. x y 0 -7 2 -2 4 3 6 8 8 13							

Main Ideas/Questions	Notes/Examples					
ABSOLUTE VALUE FUNCTIONS	 The absolute value function is written as					
GRAPHING	To create a table of values, it's best to place the vertex in the middle, then include values on both sides.					
{by Table}	(1) Find the x-value of the vertex. Set the expression from the inside of the absolute value bars equal to 0 and solve.					
	2 PLACE THIS VALUE IN THE MIDDLE ROW OF YOUR TABLE. Number up and down, then complete the table.					
	GRAPH!					

Main Ideas/Questions	Notes						
WARM-UP	1. If a valu	x = 7, what are the possible les of x?	2. If x = -4, what are the possible values of x?				
STEPS TO SOLVE	1	ISOLATE the absolute value expression.					
Absolute Value	2	CREATE TWO CASES. Set the "inside" equal to both the positive and negative value of the number on the opposite side of the equal sign.					
Equations	3	SOLVE both equations.					
	4	CHECK for extraneous solutions.					