1.9 Completing the Square

Use the technique we practiced to change from standard form to vertex form and identify the vertex of each parabola WITHOUT graphing.

1. $f(x) = x^2 + 2x - 48$ 6. $f(x) = 7x^2 + 14x - 21$ 2. $f(x) = x^2 - 10x - 56$ 7. $f(x) = 2x^2 + 8x - 64$ 3. $f(x) = x^2 + 2x - 57$ 8. $f(x) = 10x^2 - 20x - 87$ 4. $f(x) = x^2 + 8x + 12$ 9. $f(x) = 9x^2 + 18x + 42$ 5. $f(x) = x^2 + 12x - 6$ 10. $f(x) = 3x^2 + 18x + 48$

1.10 Quadratic Forms Summary

If all key features (x-intercepts, y-intercept and vertex) are to be identified, it is sometimes necessary to express a function in an equivalent form. The forms and key features found include the following:

Form	Key Features Easily Identified
Vertex Form: $y = a(x - h)^2 + k$	vertex (h, k)
	y-intercept (replace x with 0, and simplify)
Factored Form: $y = (x + a)(x + b)$	x-intercepts from factors
	y-intercept by replacing x with 0, and simplifying
Standard Form: $y = ax^2 + bx + c$	y-intercept is c (replace x with 0, and simplify)

PART 1: Vertex Form to Standard Form (Identifying the y-intercept):

Use prior knowledge to simplify expression, and write terms in descending order.

Vertex Form	$y = 2(x-1)^2 + 3$	
	$y = 2(x^2 - 2x + 1) + 3$	Multiply $(x - 1)(x - 1)$ and simplify.
	$y = 2x^2 - 4x + 2 + 3$	Distribute 2.
Standard Form	$y = 2x^2 - 4x + 5$	Simplify.

TRY IT OUT: Write each quadratic function in standard form and identify the y-intercept of each function.

1.
$$y = 3(x+2)^2 + 1$$
 2. $y = (x-2)^2 + 2$ 3. $y = -(x+1)^2 - 1$ 4. $y = -2(x-4)^2 - 3$

PART 2: Factored Form to Standard Form:

Use prior knowledge to simplify expression, and write terms in descending order.

Factored Form	y = 3(x-2)(x-1)	
	$y = 3(x^2 - x - 2x + 2)$	Multiply $(x - 2)(x - 1)$ using Distributive Property.
	$y = 3(x^2 - 3x + 2)$	Simplify.
Standard Form	$y = 3x^2 - 9x + 6$	Distribute 3.

TRY IT OUT: Write quadratic function in standard form.

1. y = -2(x + 2)(x - 1) 2. y = (x + 4)(x + 3) 3. y = 3(2x - 1)(x - 1) 4. y = (5x + 1)(x - 3)

PART 3: Standard Form to Factored Form (Identifying the x-intercepts):

This will require new knowledge in factoring quadratic expressions.

Standard Form	$y = 2x^2 + 4x - 6$		
	$y = 2(x^2 + 2x - 3)$	Factor out common factor of 2.	
Factored Form	y = 2(x + 3)(x - 1)	Factor quadratic expression.	

TRY IT OUT: Write quadratic function in factored form.

1. $y = x^2 + 5x + 6$	5. $y = 3x^2 - 6x + 3$	9. $y = x^2 - 17x + 72$
2. $y = 2x^2 - x - 1$	6. $y = x^2 - 3x - 10$	10. $y = 5x^2 + 35x + 60$
3. $y = x^2 - 5x + 6$	7. $y = x^2 - 4x + 4$	
4. $y = x^2 - 5x - 6$	8. $y = 2x^2 + 4x - 70$	

PART 4: Standard Form to Vertex Form:

*Reason to change would be to identify vertex. This will require new knowledge in completing the square.

Standard Form	$y = x^2 + 4x - 6$	
	$y = (x^2 + 4x + 4) - 3 - 4$	Add 4 to complete the square. Subtract 4 to keep equation balanced.
Vertex Form	$y = (x + 2)^2 - 7$	Write in factored form, and simplify.
Standard Form	$y = 2x^2 + 4x - 10$	
	$y = 2(x^2 + 2x - 5)$	Factor out 2.
	$y = 2[(x^2 + 2x + 1) - 5 - 1]$	Add 1 to complete the square. Subtract 1 to keep equation balanced.
	$y = 2[(x + 1)^2 - 6]$	Write in factored form, and simplify.
Vertex Form	$y = 2(x + 1)^2 - 12$	Distribute 2.

TRY IT OUT: Write quadratic function in vertex form.

1.	$y = x^2 + 6x - 2$	3.	$y = 2x^2 + 4x + 6$	5.	$y = x^2 + 12x + 2$
2.	$\mathbf{y} = \mathbf{x}^2 + 8\mathbf{x} - 1$	4.	$y = 3x^2 + 12x - 6$	6.	$y = x^2 + 5x + 1$