1.9 Completing the Square

Use the technique we practiced to change from standard form to vertex form and identify the vertex of each parabola WITHOUT graphing.

1. $f(x)=x^{2}+2 x-48$
2. $f(x)=x^{2}-10 x-56$
3. $f(x)=x^{2}+2 x-57$
4. $f(x)=x^{2}+8 x+12$
5. $f(x)=x^{2}+12 x-6$
6. $f(x)=7 x^{2}+14 x-21$
7. $f(x)=2 x^{2}+8 x-64$
8. $f(x)=10 x^{2}-20 x-87$
9. $f(x)=9 x^{2}+18 x+42$
10. $f(x)=3 x^{2}+18 x+48$

1.10 Quadratic Forms Summary

If all key features (x-intercepts, y-intercept and vertex) are to be identified, it is sometimes necessary to express a function in an equivalent form. The forms and key features found include the following:

Form	$\underline{\text { Key Features Easily Identified }}$
Vertex Form: $y=\mathrm{a}(x-\mathrm{h})^{2}+\mathrm{k}$	vertex (h, k$)$ y-intercept (replace x with 0, and simplify)
Factored Form: $y=(x+\mathrm{a})(x+\mathrm{b})$	x-intercepts from factors y-intercept by replacing x with 0, and simplifying
Standard Form: $y=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$	y-intercept is c (replace x with 0, and simplify)

PART 1: Vertex Form to Standard Form (Identifying the y-intercept):

Use prior knowledge to simplify expression, and write terms in descending order.
Vertex Form

Standard Form

$$
\begin{array}{ll}
y=2(x-1)^{2}+3 & \\
y=2\left(x^{2}-2 x+1\right)+3 & \text { Multiply }(x-1)(x-1) \text { and simplify } \\
y=2 x^{2}-4 x+2+3 & \text { Distribute 2. } \\
y=2 x^{2}-4 x+5 & \text { Simplify }
\end{array}
$$

TRY IT OUT: Write each quadratic function in standard form and identify the y-intercept of each function.

1. $\mathrm{y}=3(\mathrm{x}+2)^{2}+1$
2. $y=(x-2)^{2}+2$
3. $y=-(x+1)^{2}-1$
4. $y=-2(x-4)^{2}-3$

PART 2: Factored Form to Standard Form:

Use prior knowledge to simplify expression, and write terms in descending order.
Factored Form

$$
y=3\left(x^{2}-x-2 x+2\right) \quad \text { Multiply }(x-2)(x-1) \text { using Distributive Property. }
$$

Standard Form

$$
\begin{aligned}
& y=3(x-2)(x-1) \\
& y=3\left(x^{2}-x-2 x+\right. \\
& y=3\left(x^{2}-3 x+2\right) \\
& y=3 x^{2}-9 x+6
\end{aligned}
$$

Simplify.

Distribute 3.
TRY IT OUT: Write quadratic function in standard form.

1. $y=-2(x+2)(x-1)$
2. $y=(x+4)(x+3)$
3. $y=3(2 x-1)(x-1)$
4. $\mathrm{y}=(5 \mathrm{x}+1)(\mathrm{x}-3)$

PART 3: Standard Form to Factored Form (Identifying the x-intercepts):

This will require new knowledge in factoring quadratic expressions.
Standard Form

$$
y=2 x^{2}+4 x-6
$$

$$
y=2\left(x^{2}+2 x-3\right) \quad \text { Factor out common factor of } 2
$$

Factored Form

$$
\mathrm{y}=2(\mathrm{x}+3)(\mathrm{x}-1)
$$

Factor quadratic expression.

TRY IT OUT: Write quadratic function in factored form.

1. $y=x^{2}+5 x+6$
2. $y=2 x^{2}-x-1$
3. $y=x^{2}-5 x+6$
4. $y=x^{2}-5 x-6$
5. $y=3 x^{2}-6 x+3$
6. $y=x^{2}-3 x-10$
7. $y=x^{2}-4 x+4$
8. $y=2 x^{2}+4 x-70$
9. $y=x^{2}-17 x+72$
10. $y=5 x^{2}+35 x+60$

PART 4: Standard Form to Vertex Form:

*Reason to change would be to identify vertex. This will require new knowledge in completing the square.
Standard Form

$$
y=x^{2}+4 x-6
$$

$$
y=\left(x^{2}+4 x+4\right)-3-4 \quad \text { Add } 4 \text { to complete the square. Subtract } 4 \text { to keep }
$$ equation balanced.

Vertex Form	$y=(x+2)^{2}-7$	Write in factored form, and simplify.
Standard Form	$y=2 x^{2}+4 x-10$	
$y=2\left(x^{2}+2 x-5\right)$	Factor out 2.	
$y=2\left[\left(x^{2}+2 x+1\right)-5-1\right]$	Add 1 to complete the square. Subtract 1 to keep equation balanced.	
Vertex Form	$y=2\left[(x+1)^{2}-6\right]$	Write in factored form, and simplify.
	$y=2(x+1)^{2}-12$	Distribute 2.

TRY IT OUT: Write quadratic function in vertex form.

1. $y=x^{2}+6 x-2$
2. $y=x^{2}+8 x-1$
3. $y=2 x^{2}+4 x+6$
4. $y=3 x^{2}+12 x-6$
5. $y=x^{2}+12 x+2$
6. $y=x^{2}+5 x+1$
