1.1 Complex Numbers HW

Imaginary and Complex Numbers

The imaginary number *i* is defined as the square root of -1, so $i = \sqrt{-1}$. Therefore $i^2 = -1$, and the two solutions of the equation $x^2 + 1 = 0$ are x = i and x = -i.

In general, i follows the rules of real number arithmetic. The sum of two imaginary numbers is imaginary (unless it is 0). Multiplying the imaginary number i by every possible real number would yield the set of all the imaginary numbers.

The set of numbers that solve equations of the form $x^2 =$ (a negative real number) is called the set of **imaginary numbers**. Imaginary numbers are not positive, negative, or zero. The collection (set) of positive and negative numbers (integers, rational numbers (fractions), and irrational numbers), are referred to as the **real numbers**.

The sum of a real number (other than zero) and an imaginary number, such as 2 + i, is generally neither real nor imaginary. Numbers such as these, which can be written in the form a + bi, where *a* and *b* are real numbers, are called **complex numbers**. Each complex number has a real component, *a*, and an imaginary component, *bi*. The real numbers are considered to be complex numbers with b = 0, and the imaginary numbers are complex numbers with a = 0.

- 1. Write each of the following expressions in the form a + bi. <u>Help</u>
 - a. $-18 \sqrt{-25}$ b. $\frac{2\pm\sqrt{-16}}{2}$ c. $5 + \sqrt{-6}$
- 2. Explain why $i^3 = -i$. What does i^4 equal? <u>Help</u>
- 3. If $f(x) = x^2 + 7x 9$, calculate the values in parts (a) through (c) below. <u>*Help*</u>
 - a. f(-3) b. f(i) c. f(-3+i)
- 4. Is 5 + 2i a solution to $x^2 10x = -29$? How can you be sure? <u>*Help*</u>
- **5.** Calculate the value of each expression below. <u>*Help*</u>
 - a. $\sqrt{-49}$ b. $\sqrt{-2}$ c. $(4i)^2$ d. $(3i)^3$

