1.1 Complex Numbers HW

Imaginary and Complex Numbers

The imaginary number \boldsymbol{i} is defined as the square root of -1 , so $i=\sqrt{-1}$. Therefore $i^{2}=-1$, and the two solutions of the equation $x^{2}+1=0$ are $x=i$ and $x=-i$.

Math Notes

In general, i follows the rules of real number arithmetic. The sum of two imaginary numbers is imaginary (unless it is 0). Multiplying the imaginary number i by every possible real number would yield the set of all the imaginary numbers.

The set of numbers that solve equations of the form $x^{2}=$ (a negative real number) is called the set of imaginary numbers. Imaginary numbers are not positive, negative, or zero. The collection (set) of positive and negative numbers (integers, rational numbers (fractions), and irrational numbers), are referred to as the real numbers.

The sum of a real number (other than zero) and an imaginary number, such as $2+i$, is generally neither real nor imaginary. Numbers such as these, which can be written in the form $a+b i$, where a and b are real numbers, are called complex numbers. Each complex number has a real component, a, and an imaginary component, $b i$. The real numbers are considered to be complex numbers with $b=0$, and the imaginary numbers are complex numbers with $a=0$.

- 1. Write each of the following expressions in the form $a+b i$. Help
a. $-18-\sqrt{-25}$
b. $\frac{2 \pm \sqrt{-16}}{2}$
c. $5+\sqrt{-6}$
- 2. Explain why $i^{3}=-i$. What does i^{4} equal? Help
- 3. If $f(x)=x^{2}+7 x-9$, calculate the values in parts (a) through (c) below. $\underline{\text { Help }}$
a. $\quad f(-3)$
b. $\quad f(i)$
c. $\quad f(-3+i)$
- 4. Is $5+2 i$ a solution to $x^{2}-10 x=-29$? How can you be sure? Help
- 5. Calculate the value of each expression below. $\underline{\text { Help }}$
a.
b. $\sqrt{-2}$
c.
$(4 i)^{2}$
d. $\quad(3 i)^{3}$

