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1.1 Complex Numbers  
In the past, you have not been able to solve some quadratic equations like x2 + 4 = 0 and  

x2 + 1 = 0, because there are no real numbers you can square to get a negative answer. To 

solve this issue, mathematicians created a new, expanded number system based on one new 

number. However, this was not the first time mathematicians had invented new numbers! To 

read about other such inventions, refer to the Historical Note that follows problem 1. 

In this lesson, you will learn about imaginary numbers and how you can use them to solve 

equations you were previously unable to solve. 

 1. Consider the equation x2 = 2. 

a. How do you “undo” squaring a number? 

b. When you solve x2 = 2, how many solutions should you get? 

c. How many x-intercepts does the graph of y = x2 − 2 have? 

d. Solve the equation x2 = 2. Write your solutions both as radicals and as decimal 

approximations. 

Historical Note: Irrational Numbers 
In Ancient Greece, people believed that all numbers could be written as fractions of whole 

numbers (what are now called rational numbers). Many individuals realized later that some 

numbers could not be written as fractions (such as ), and these individuals challenged the 

accepted beliefs. Some of the people who challenged the beliefs were exiled or outright killed 

over these challenges! 

The Greeks knew that for a one-unit square, the length of the diagonal, squared, yielded 2. 

When it was shown that no rational number could do that, the existence of what are 

called irrational numbers was accepted and symbols like  were invented to represent 

them. 

The problem x2 = 3 also has no rational solutions; fractions can never work exactly. The 

rational (i.e., decimal) solutions that calculators and computers provide are only 

approximations; the exact answer can only be represented in radical form, namely, . 

 2. Mathematicians throughout history have resisted the idea that some equations may not be 

solvable. Still, it makes sense that x2 + 1 = 0 cannot be solved because the graph of y = x2 + 1 

has no x-intercepts (and x-intercepts are the roots or solutions of an equation). What happens 

when you try to solve x2 + 1 = 0? 
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Historical Note: Imaginary Numbers 
In some ways, each person's math education parallels the history of mathematical discovery. 

When you were much younger, if you were asked, “How many times does 3 go into 8?” 

or “What is 8 divided by 3?” you might have said, “3 doesn't go into 8.” Then you learned 

about numbers other than whole numbers, and the question had an answer. Later, if you were 

asked, “What number squared makes 5?” you might have said, “No number squared makes 

5.” Then you learned about numbers other than rational numbers, and you could answer that 

question.  Similarly, until about 500 years ago, the answer to the question, “What number 

squared makes −1?” was, “No number squared makes −1.” Then something remarkable 

happened. An Italian mathematician named Bombelli used a formula for finding the roots of 

third-degree polynomials. Within the formula was a square root, and when he applied the 

formula to a particular equation, the number under the square root came out negative. Instead 

of giving up, he had a brilliant idea. He had already figured out that the equation had a 

solution, so he decided to see what would happen if he pretended that there was a number he 

could square to make a negative. Remarkably, he was able to continue the calculation, and 

eventually the “imaginary” number disappeared from the solution. More importantly, the 

resulting answer worked; it solved his original equation. This led to the acceptance of these 

so-called imaginary numbers. The name stuck, and mathematicians became convinced that 

all quadratic equations do have solutions. Of course, in some situations you will only be 

interested in real number solutions (that is, solutions not having an imaginary part). 

 3. In the 1500s, an Italian mathematician named Rafael Bombelli invented the imaginary 

number √−1 , which is now called i. √−1 = 𝑖  implies that i 2 = −1. After this invention, it 

became possible to find solutions for x2 + 1 = 0; they are i and −i.  

The value of √−16 = √16(−1) = √16𝑖2 = 4𝑖. Use the definition of i to rewrite each of the 

following expressions. 

a. √−4  b. (2i)(3i) c. (2i)2(−5i) d. √−25  
 

Part I: Introducing Imaginary Numbers  

1. Solve the following equations:  

a. x2 = 121  b. 5x2 = 200  

 

2. How would we solve an equation like this?    x2 = −36 

 

3. The imaginary number 𝑖 is introduced when we are asked to take the square root of 

a negative number.  

a. If we let i = √−1 , what is 𝑖2? Show your work and explain each step. 

 

4. Solve the following equations using your conclusions from above:  
a. 𝑥2 = −100  

b. 𝑥2 = −25  

c. 𝑥2 = −49  

d. 𝑥2 = −169  

e. 𝑥2 = −18  

f. 𝑥2 = −96  

g. 2𝑥2 = −50  

h. 4𝑥2−4 = −68  

i. −3𝑥2 − 27 = 162  

j. 5(𝑥2 + 20)= −300  
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Part II: Powers of 𝒊  

Using the information about the imaginary unit 𝑖 you have learned above, calculate the 

following powers of i. The first two problems, 𝑖1 𝑎𝑛𝑑 𝑖2, have been completed for you.  

𝑖1 = i  
𝑖2 = –1  
𝑖3 =    

𝑖4 =    

𝑖5 =    

𝑖6 =    

𝑖7 =    

𝑖8 =    

⋮ 

𝑖100 =    

𝑖101 =    

Describe what patterns you recognize from completing the problems above. 
 

Part III: Complex Numbers and Operations  

We can use addition and subtraction with complex numbers by combining like terms. 

Complete each problem below by writing an equivalent expression for each.  

1.   (2 + 4𝑖) + (5 − 7𝑖) 
2.   (4 − 8𝑖) − (3 − 6𝑖) 
 

3.   3(−2 + 5𝑖) − (1 − 7𝑖) 
4.   (7 + √−81) + 17𝑖 

We can also use multiplication with complex numbers.  Remember: 𝑖2 = −1.   

Complete each problem by writing an equivalent expression for each.  

1.   (−6𝑖)(−6𝑖) 
2.   (−5𝑖)(3𝑖) 

3.  √−6 ∙  √−15 ∙  √−80   
4.   −9𝑖(4 − 3𝑖) 

5.   (4 − 6𝑖)(7 + 𝑖) 
6.   (4 − 6𝑖)(6 − 6𝑖) 
7.   (−2𝑖 + 7)(−2𝑖 − 7) 

8.   (5 + 3𝑖)(5 − 3𝑖) 
 

 

Summary 
 

 


