1.6 Factored Form

Part I: Looking back at linear functions.

Consider the function: $f(x)=2 x-6$

1. Identify the y -intercept by substituting 0 for x .
2. Identify the x -intercept substituting 0 for $f(x)$.
3. Using the intercepts, graph the function.

Calculating the x and y -intercepts of a function is a slick way to graph the function. We can use this technique for other functions that are not linear, such as quadratic functions.

Part II: The Zero Product Rule

1. Determine $0 \cdot 5 \cdot 12 \cdot 119$
2. Determine $(-7) \cdot(315) \cdot(0) \cdot(89)$
3. Determine $(13)(21)(0)$
4. What can you conclude from the example problems above?
5. If $(x-4)(x+8)=0$, find the value(s) for x. Show your work and explain how you got your answers.
6. If we are given $(x-4)(x+8)(x-2)$ and their product is 0 , then one of the individual factors MUST be 0 .

Therefore, $(x-4)(x+8)(x-2)=0$ for which values of x ?
7. Solve $(x-10)(x+6)=0$
9. Solve $(3 x-2)(5-x)=0$
8. Solve $(2 x-8)(x-12)=0$
10. Solve $(x-A)(x-B)=0$

In general, to determine when a product of linear factors is equal to 0 , just set each individual factor equal to 0 and solve. This zero-product rule will make our work with quadratic functions much easier!
When a function is expressed in factored form (written as a product of linear factors), we can, by the zero-product rule, determine its x-intercepts simply by setting each factor equal to 0 .

Part III: Identify the key features and graph the quadratic function $q(x)=(2 x-6)(x-7)$

1. Determine the y-intercept. 2. Determine the x-intercepts.
2. The symmetry of parabolas allows us to use the x-intercepts of a quadratic function to determine its vertex.
In general, if a quadratic function has two x-intercepts, the x-coordinate of its vertex must be midway between the two x-intercepts.
3. Using the intercepts you found above, determine the value that is midway between (call it $\mathrm{m})$. Explain how you determined this value.
4. Calculate $q(m)$. Then, identify the vertex.
5. Using the four key points you determined from \#1-5, complete the table of values to the right and graph the function.
In general, when a quadratic function is presented in factored form, you can easily determine the following to graph the function:
a. y-intercept
b. x -intercepts

Key Point	x-value	y-value
y-intercept	0	
x-intercept		0
x-intercept		0
vertex	5	

c. vertex (using the point midway between the x-intercepts)

Part IV: You try it now!

Determine the key points (y-intercept, both x-intercepts, vertex) for each function below. Then, use those four key points to graph the function.

1. $f(x)=(x-1)(x-3)$
2. $g(x)=(x+1)(x-3)$
3. $h(x)=(x+1)(x+3)$
4. $k(x)=-2(x-1)(x-3)$
