Math 2 (L2-1)

A.REI.4b, N.CN. 7

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Learning Targets:

- I can solve a quadratic equation by square roots.
- I can solve quadratic equations with complex solutions.

Square Root Scoot
Print stations, and place them on the walls around the room.

Students should be split into 5 groups. Assign each group to a station. Have them complete Exercise \#1. Then, ask them to scoot to the next station. While at the next station, students should check the work of the previous group and make corrections as needed. Then, they will complete Exercise \#2. Students should be directed to scoot to next station. Repeat process until all stations have been completed.

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 1:

1. $0=x^{2}+9$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
2. $0=x^{2}$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
3. $0=2 x^{2}-8$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
4. $0=x^{2}-4$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
5. $0=x^{2}-27$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 2:

1. $0=x^{2}-9$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
2. $0=x^{2}+5$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
3. $0=3 x^{2}-27$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
4. $0=x^{2}+4$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
5. $0=-x^{2}-27$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 3:

1. $0=4 x^{2}-9$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
2. $0=16 x^{2}$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
3. $0=2 x^{2}+32$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
4. $0=x^{2}+6$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
5. $0=x^{2}-81$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 4:

1. $0=2 x^{2}-200$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
2. $0=x^{2}-25$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
3. $0=x^{2}+25$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
4. $0=-x^{2}+3$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
5. $0=x^{2}-24$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 5:

1. $0=4 x^{2}-25$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
2. $0=-5 x^{2}$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
3. $0=-3 x^{2}+81$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
4. $0=2 x^{2}-36$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?
5. $0=x^{2}-18$
a. Solve by square roots.
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist?

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Answer Key

Station 1:

1. $0=x^{2}+9$
a. Solve by square roots. $x= \pm 3 i$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.

No, solutions are not rational.
d. How many real solutions exist? 0
2. $0=x^{2}$
a. Solve by square roots. $x=0$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain. Yes, solutions are rational.
d. How many real solutions exist? $\quad 1$
3. $0=2 x^{2}-8$
a. Solve by square roots. $x= \pm 2$
b. Are the solutions rational, irrational, or complex?
rational
c. Could the equation be solved by factoring? Explain. Yes, solutions are rational.
d. How many real solutions exist? 2
4. $0=x^{2}-4$
a. Solve by square roots. $x= \pm 2$
b. Are the solutions rational, irrational, or complex?
rational
c. Could the equation be solved by factoring? Explain.

Yes, solutions are rational.
d. How many real solutions exist? 2
5. $0=x^{2}-27$
a. Solve by square roots. $x= \pm 3 \sqrt{3}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.

No, solutions are not rational.
d. How many real solutions exist? 0

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 2:

1. $0=x^{2}-9$
a. Solve by square roots. $x= \pm 3$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.

Yes, the solutions are rational.
d. How many real solutions exist?
2. $0=x^{2}+5$
a. Solve by square roots. $x= \pm i \sqrt{5}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
complex
No, solutions are not rational.
d. How many real solutions exist? 0
3. $0=3 x^{2}-27$
a. Solve by square roots. $x= \pm 3$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.

Yes, solutions are rational.
d. How many real solutions exist? 2
4. $0=x^{2}+4$
a. Solve by square roots. $x= \pm 2 i$
b. Are the solutions rational, irrational, or complex? complex
c. Could the equation be solved by factoring? Explain. No, solutions are not rational.
d. How many real solutions exist? 0
5. $0=-x^{2}-27$
a. Solve by square roots. $x= \pm 3 i \sqrt{3}$
b. Are the solutions rational, irrational, or complex?
complex
c. Could the equation be solved by factoring? Explain. No, solutions are not rational.
d. How many real solutions exist? 0

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 3:

1. $0=4 x^{2}-9$
a. Solve by square roots. $x= \pm \frac{3}{2}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
rational
Yes, solutions are rational.
d. How many real solutions exist? 2
2. $0=16 x^{2}$
a. Solve by square roots. $x=0$
b. Are the solutions rational, irrational, or complex?
rational

Yes, solutions are rational.
d. How many real solutions exist? 1
3. $0=2 x^{2}+32$
a. Solve by square roots. $x= \pm 4 i$
b. Are the solutions rational, irrational, or complex?
complex
c. Could the equation be solved by factoring? Explain.

No, solutions are not rational.
d. How many real solutions exist? 0
4. $0=x^{2}+6$
a. Solve by square roots. $x= \pm i \sqrt{6}$
b. Are the solutions rational, irrational, or complex?
complex
c. Could the equation be solved by factoring? Explain.

No, solutions are not rational.
d. How many real solutions exist? 0
5. $0=x^{2}-81$
a. Solve by square roots.
$x= \pm 9$
b. Are the solutions rational, irrational, or complex?
rational
c. Could the equation be solved by factoring? Explain. Yes, solutions are rational.
d. How many real solutions exist? 2

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 4:

1. $0=2 x^{2}-200$
a. Solve by square roots. $x= \pm 10$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist? 2
2. $0=x^{2}-25$
a. Solve by square roots. $x= \pm 5$
b. Are the solutions rational, irrational, or complex
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist? 2
3. $0=x^{2}+25$
a. Solve by square roots. $x= \pm 5 i$
b. Are the solutions rational, irrational, or complex
c. Could the equation be solved by factoring? Explain.
d. How many real solutions exist? 0
4. $0=-x^{2}+3$
a. Solve by square roots. $x= \pm i \sqrt{3}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain. No, solutions are not rational.
d. How many real solutions exist? 0
complex
5. $0=x^{2}-24$
a. Solve by square roots. $x= \pm 2 \sqrt{6}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
d
How many real solutions exist?

Yes, solutions are rational.

Yes, solutions are rational.
complex
No, solutions are not rational.
rational
rational

Assessment Title: Square Root Scoot

Unit 3: Quadratic Functions: Working with Equations

Station 5:

1. $0=4 x^{2}-25$
a. Solve by square roots. $x= \pm \frac{5}{2}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain.
rational
Yes, solutions are rational.
d. How many real solutions exist? 2
2. $0=-5 x^{2}$
a. Solve by square roots. $x=0$
b. Are the solutions rational, irrational, or complex?
rational
c. Could the equation be solved by factoring? Explain.

Yes, solution is rational.
d. How many real solutions exist? $\quad 1$
3. $0=-3 x^{2}+81$
a. Solve by square roots. $x= \pm 3 \sqrt{3}$
b. Are the solutions rational, irrational, or complex
c. Could the equation be solved by factoring? Explain.

No, solutions are not rational.
d. How many real solutions exist? 2
4. $0=2 x^{2}-36$
a. Solve by square roots. $x= \pm 3 \sqrt{2}$
b. Are the solutions rational, irrational, or complex? irrational
c. Could the equation be solved by factoring? Explain. No, solutions are not rational.
d. How many real solutions exist? 2
irrational
5. $0=x^{2}-18$
a. Solve by square roots. $x= \pm 3 \sqrt{2}$
b. Are the solutions rational, irrational, or complex?
c. Could the equation be solved by factoring? Explain. No, solutions are not rational.
d.

How many real solutions exist?
2

