2.9 HW

1. In parts (a) through (d) below, for each polynomial function $f(x)$, the graph of $f(x)$ is shown. Based on this information, state the number of linear and quadratic factors the factored form of its equation should have and how many real and complex (non-real) solutions $f(x)=0$ might have. (Assume a polynomial function of the lowest possible degree for each one.)

- Example: $f(x)$ at right will have three linear factors, therefore three real roots
 and no complex roots. Homework Help *
a.

b.

c.

d.

2. Make a sketch of a graph $p(x)$ so that $p(x)=0$ would have the indicated number and type of solutions. Homework Help ?
a. 5 real solutions
b. 3 real and 2 complex
c. 4 complex
d. 4 complex and 2 real
e. For parts (a) through (d), what is the lowest degree each function could have?
3. Consider the function $y=x^{3}-9 x$. Homework Help ․
a. What are the roots of the function? (Factoring will help!)
b. Sketch a graph of the function.
4. Make rough sketches of the graphs of each of the following polynomial functions. Be sure to label the x - and y-intercepts. Homework Help ?
a. $y=x(2 x+5)(2 x-7)$
b. $y=(15-2 x)^{2}(x+3)$

Answer Key

1. See below:

a. three real linear factors (one repeated), therefore two real (one single, one double) and zero complex (non-real) roots
b. one linear and one quadratic factor, therefore one real and two complex (non-real) roots
c. four linear factors, therefore four real and zero complex (non-real) roots
d. two linear and one quadratic factor, therefore two real and two complex (non-real) roots
2. See graphs below:
a.

b.

c.

d.

e. (a) 5 , (b) 5 , (c) 4 , (d) 6

3. See below:

a. $(3,0),(0,0)$, and $(-3,0)$
b. See graph below.

4. See below:

a. x-intercepts: $\left(-\frac{5}{2}, 0\right),(0,0)$, and $\left(\frac{7}{2}, 0\right), y$-intercept: $(0,0)$

b. x-intercepts: $(-3,0)$ and ${ }^{\left(\frac{15}{2}, 0\right)}$ (double root), y-intercept: $(0,675)$

