

## **Lesson Summary**

In this lesson, we applied what we have learned in the past two lessons about addition, subtraction, multiplication, and division of rational expressions to solve rational equations. An extraneous solution is a solution to a transformed equation that is not a solution to the original equation. For rational functions, extraneous solutions come from the excluded values of the variable.

Rational equations can be solved one of two ways:

- 1. Write each side of the equation as an equivalent rational expression with the same denominator and equate the numerators. Solve the resulting polynomial equation, and check for extraneous solutions.
- 2. Multiply both sides of the equation by an expression that is the common denominator of all terms in the equation. Solve the resulting polynomial equation, and check for extraneous solutions.

## **Problem Set**

1. Solve the following equations, and check for extraneous solutions.

| a. | $\frac{x-8}{x-4} = 2$                                             | b. | $\frac{4x-8}{x-2} = 4$                             | c. | $\frac{x-4}{x-3} = 1$                               |
|----|-------------------------------------------------------------------|----|----------------------------------------------------|----|-----------------------------------------------------|
| d. | $\frac{4x-8}{x-2} = 3$                                            | e. | $\frac{1}{2a} - \frac{2}{2a-3} = 0$                | f. | $\frac{3}{2x+1} = \frac{5}{4x+3}$                   |
| g. | $\frac{4}{x-5} - \frac{2}{5+x} = \frac{2}{x}$                     | h. | $\frac{y+2}{3y-2} + \frac{y}{y-1} = \frac{2}{3}$   | i. | $\frac{3}{x+1} - \frac{2}{1-x} = 1$                 |
| j. | $\frac{4}{x-1} + \frac{3}{x} - 3 = 0$                             | k. | $\frac{x+1}{x+3} - \frac{x-5}{x+2} = \frac{17}{6}$ | I. | $\frac{x+7}{4} - \frac{x+1}{2} = \frac{5-x}{3x-14}$ |
| m. | $\frac{b^2 - b - 6}{b^2} - \frac{2b + 12}{b} = \frac{b - 39}{2b}$ | n. | $\frac{1}{p(p-4)} + 1 = \frac{p-6}{p}$             | 0. | $\frac{1}{h+3} = \frac{h+4}{h-2} + \frac{6}{h-2}$   |
| p. | $\frac{m+5}{m^2+m} = \frac{1}{m^2+m} - \frac{m-6}{m+1}$           |    |                                                    |    |                                                     |

- 2. Create and solve a rational equation that has 0 as an extraneous solution.
- 3. Create and solve a rational equation that has 2 as an extraneous solution.



engage<sup>ny</sup>

S.133