
Surface Areas of Pyramids and Cones

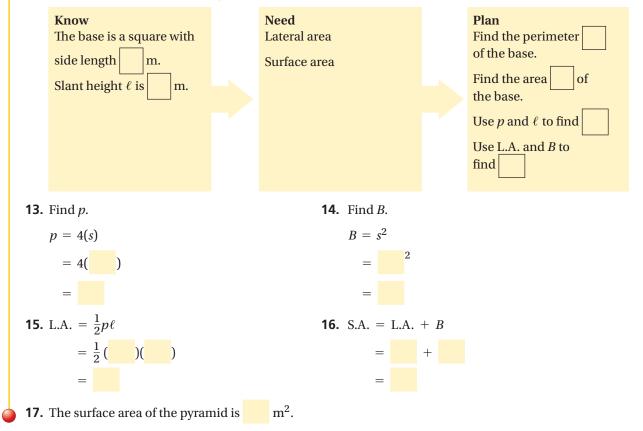
Vocabulary

Review

Label each diagram cone or pyramid.

- 6. Is the *slant height* the same as the *height* of a pyramid or cone?
- 7. The *slant height* of the cone at the right is

in. 2 in


Yes / No

ve not Theorem 11-3 Lateral and Surface Areas of a Pyramid The lateral area (L.A.) of a regular pyramid is half the product of the perimeter *p* of the base and the slant height ℓ of the pyramid. The surface area (S.A.) of a regular pyramid is the sum of the lateral area and the area *B* of the base. **8.** In a square pyramid with base side length s, p =9. If the base of a regular pyramid has a perimeter of 6q and its side length is 6, the pyramid has sides. Draw a line from each description in Column A to the corresponding formula in Column B. Column A Column B $\frac{1}{2}p\ell$ **10.** lateral area (L.A.) of a pyramid $\frac{1}{2}p\ell + B$ **11.** surface area (S.A.) of a pyramid

Problem 1 Finding the Surface Area of a Pyramid

Got lt? A square pyramid has base edges of 5 m and a slant height of 3 m. What is the surface area of the pyramid?

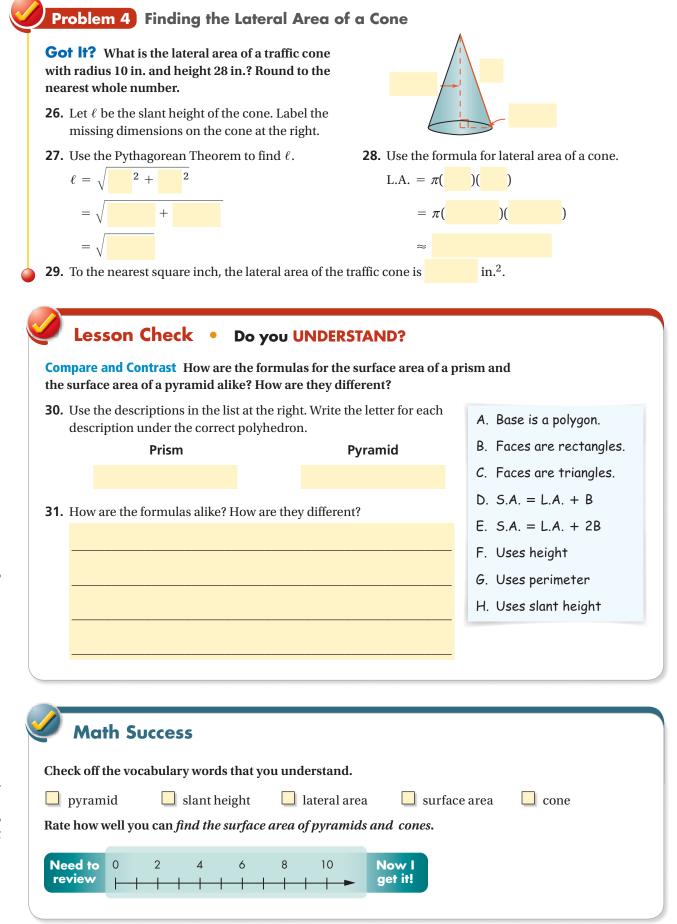
12. Complete the problem-solving model below.

Problem 2 Finding the Lateral Area of a Pyramid 42 f **Got It?** What is the lateral area of the hexagonal pyramid at the right? $\sqrt{3}$ ft Round to the nearest square foot. **18.** Circle the correct equation for the perimeter of the hexagonal base. $\frac{1}{2}(36)(18\sqrt{3}) \approx 561$ $42 \cdot 36 = 1512$ $6 \cdot 18 = 108$ $6 \cdot 36 = 216$ **19.** The slant height ℓ of the pyramid is the hypotenuse of a right triangle. Label the legs of the right triangle at the right. ft **20.** Use the Pythagorean Theorem to find the slant height ℓ of the pyramid. 2 $^{2} +$ $\ell =$ ft +**21.** Use the formula L.A. $=\frac{1}{2}p\ell$ to find the lateral area of the pyramid. L.A. $=\frac{1}{2}$ ()() ≈ 22. The lateral area of the hexagonal pyramid is about ft². ke note Theorem 11-4 Lateral and Surface Areas of a Cone The lateral area of a right cone is half the product of the circumference Vertex of the base and the slant height of the cone. Slant height Altitude L.A. = $\frac{1}{2} \cdot 2\pi r \cdot \ell$, or L.A. = $\pi r \ell$ The surface area of a cone is the sum of the lateral area and the area of the base.

23. S.A. = L.A. +

Problem 3 Finding the Surface Area of a Cone

Got lt? The radius of the base of a cone is 16 m. Its slant height is 28 m. What is the surface area in terms of π ?


24. Use the justifications at the right to find the surface area.

S.A. = L.A. + B
=
$$+$$
 Use the formula for surface area.
Substitute the formulas for L.A. and B.
= $\pi(-)(-) + \pi(-)^2$ Substitute for r and for ℓ .
= $\pi(-) + \pi(-)$ Simplify.
= $\pi(-)$ Add.
The surface area of the cone in terms of π is $-\pi^2$

25. The surface area of the cone in terms of π is

Base

296

297